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The existence of a thermodynamic limit of the distribution of Liapunov 
exponents is numerically verified in a large class of symplectic models, ranging 
from Hamiltonian flows to maps and products of random matrices. In the 
highly chaotic regime this distribution is approximately model-independent. 
Near an integrable limit only a few exponents give a relevant contribution to the 
Kolmogorov-Sinai entropy. 

KEY WORDS: Liapunov exponents; Kolmogorov entropy; symplectic trans- 
formations; random matrices; thermodynamic limit; coupled oscillators. 

1. I N T R O D U C T I O N  

Relevant results have been obtained in the comprehension of the chaotic 
properties of dynamical  systems with few degrees of freedom/1/ On  the 
contrary,  little is known when a large number  of degrees of  freedom is con- 
sidered. In these cases one looks for some generic properties that also hold 
in the the rmodynamic  limit. This is, of course, a necessary requisite for 
establishing the basis of any statistical approach.  In some cases, the study 
of the statistical spatial properties of a system even simplifies as the number  
of degrees of freedom is increased. A typical example comes from 
hydrodynamic  turbulence: a round  the onset of  chaos a few degrees of 
freedom are involved, but the dynamics  strongly depends on the "details" 
(e.g., boundary  condit ions)  and a statistical description is inappropriate.  In 
the limit of  high Reynolds numbers,  i.e., fully developed turbulence, many  
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degrees of freedom interact and some statistical properties are universal 
(e.g., velocity correlations in the inertial range). 

Thermodynamic limit properties were already observed in some 
previous papers, (2) where global statistical features, energy equipartition, 
for instance, were shown to be asymptotically independent of the number 
of degrees of freedom. 

In this paper we present a detailed numerical investigation of a large 
class of models characterized by a symplectic structure, showing the 
existence of the thermodynamic limit for the spectrum of the Liapunov 
characteristic exponents (LCE) 2i, i=  1,..., 2N (where N is the number of 
degrees of freedom). More precisely, we shall see that, in the limit of large 
N, the function 

L(i/N) -- 2]2* (1.1) 

where )o*----limN~o~ 21(N), remains fairly constant independent of N. 
Accordingly, a Kolmogorov-Sinai entropy density hKs can be introduced 
and remains finite for N~> 1. Indeed, using Pesin's formula, (3) one has 

hKs=~ ~ ~,O(~i)=~- /~ --~* (1.2) 
i = l  i=1 

where O(X) is the Heaviside function, and I = ~  L(x)dx< 1. From a 
numerical point of view, the main problem is obviously the computation of 
L However, we shall see that in strongly chaotic cases I_~0.5 and con- 
sequently the computation of hKs reduces to that of )o*. Moreover, the 
asymptotic shape of the LCE spectrum provides, in the weakly chaotic 
regime, an indication of the mechanism of the onset of chaos. 

The systems we are going to consider are Hamiltonian flows modeling 
chains of anharmonic oscillators (Section 2), symplectic maps (Section 3), 
and products of random symplectic matrices (Section 4). In all these cases 
we shall consider nearest neighbor interactions. Section 5 is devoted to 
some discussions and conclusions. 

2. H A M I L T O N I A N  FLOWS 

In this section we consider Hamiltonian models 
interacting particles. The typical Hamiltonian is of the form 

.)~= +5(qi+l--qi)2 + Vi(lt, {kt})  
i=1 

of chains of 

(2.1) 
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where qi, P; are the canonical variables and 
parameters. In a previous paper (4) we have 
Pasta-Ulam (FPU) fi-model, whose potential is 

{#} indicates a set of 
analyzed the Fermi- 

1 
V,(q, {/~})=~ fi(qi+ 1 -  q i )  4 (2.2) 

observing that a limiting distribution of exponents indeed exists and it is 
almost linear [L(x) - 1 - x]  at large energy densities ( / /> 10). We are here 
interested in studying the model dependence of these results. With this aim 
we introduce the following potentials: 

1 
V,(q, {/.z } ) = g/~(q, +~ - q,)6 (2.3) 

z w 
Vi(q, { # } ) = ( q i + l _ q i )  12 (q ,+~-qi)  6 (2.4) 

1 2 ~ 1 Vi(q, { # } ) = ~ m  q?+_~gq4 (2.5) 

Potential (2.3) is the simplest bounded higher order generalization of the 
FPU model. Potential (2.4) is the Lennard-Jones 6-12 model describing a 
realistic interaction in a crystal. Potential (2.5) is the discretization of the 
nonlinear Klein-Gordon field theory. 

Imposing periodic boundary conditions (Pl = PN+ 1, ql = qN+ 1), we 
find that the first three models turn out to have two constants of motion, 
namely energy and momentum, while in the fourth one, translational 
invariance is broken and the momentum is no longer conserved. The 
equations of motion have been integrated by means of the Verlet leap-frog 
algorithm, which preserves the symplectic structure of the Hamiltonian 
flux. The time step At has been chosen in the range (0.01, 0.1) such that 
energy is conserved within 0.1% up to integration times of the order of 10 4. 

The simulations have been performed on a CRAY1-XMP computer with a 
fully vectorialized FORTRAN program. The numerical method used for 
evaluating the LCE spectrum is sketched in the Appendix. Since the sym- 
plectic structure of the transformations here considered yields an antisym- 
metric spectrum (2i= --22N_i+ 1), we have limited our numerical analysis 
to the computation of the positive part only. 

Our control parameter is the energy density e. A comparison of the 
amplitude of the first nonlinear terms in models (2.3) and (2.4) with that in 
the FPU //-model makes possible a rough estimate of the equipartition 
threshold, thus allowing us to perform simulations in parameter regions 
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where there is, presumably, a single stochastic component,  and the LCE 
are independent of the initial condition. The situation is more complicated 
in model (2.5), where two opposite integrable limits exist. Indeed, besides 
the standard case e ~ 0, also the limit e ~ oo reduces the model to a set of 
decoupled quartic oscillators. Hence, one can expect that even in an inter- 
mediate range of e values, the motion is not fully chaotic and the LCE 
might depend on the initial condition. 
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Fig. I. L i a p u n o v  e x p o n e n t s  2 i v e r s u s  i/N. (a )  M o d e l  (2.3)  w i th  f l = 0 . 1 ,  e = 4 0 ;  (b )  m o d e l  

(2.4)  w i th  e = 5.9, z = w = 1/36; (c)  m o d e l  (2.5)  w i th  m = 1, g = 1/3, e = 47; (d )  m o d e l  (2.4)  

w i th  g = 60, z = w = 1/36, N = 20. 
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In Fig. I we show the resulting LCE spectrum for models (2.3) (2.5). 
In all these cases a random initial condition has been chosen with 
~ _  1 pi(t = 0 ) =  0. Model (2.3) has been integrated for f l=  0.1, e =  40, and 
N = 10, 20, 40, 80. In the last case only the 20 largest exponents have been 
computed. A nice convergence to a limit distribution is already obtained 
for N =  40. The function L(x)  [see Eq. (1.1)] is almost a straight line even 
if deviations are definitely out of the numerical error, which is on the third 
significant figure in this case. Model (2.4) has been integrated with 
z = w =  1/36, e =  5.9, and N =  10, 20, 40, showing a good convergence 
already for N = 20. The distribution becomes almost linear when the energy 
density is increased (see Fig. ld). 
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Fig. 2. L iapunov  exponen t s  )~, versus  t for model  (2.5), N =  20, m = 1, g = 1/3, ~ = 50, and  
with i =  1, 10, 19. The  results are repor ted for different, r andomly  chosen,  initial condit ions.  

Finally, for model (2.5), we have chosen rn = 1, g =  1/3, ~= 50, and 
N = 2 0 ,  40. At variance with the former cases, where an overall linear 
behavior of L(x) has been found, here the distribution has a hyperbolic 
shape. This can be reasonably attributed to the previously mentioned 
absence of a strongly chaotic limit. For this reason, and in order to verify 
the independence of the initial condition, we have computed the LCE spec- 
trum for three different choices of the initial conditions. The results for 
21, 210 , and 219 are shown in Fig. 2 as a function of time, suggesting the 
existence of a single stochastic component in the phase space. 

Comparing the results of these models, one can observe that the most 
relevant deviation from a linear distribution is in the region of low 
x values, where the curve shows an increasing slope. To investigate the 
dependence on ~ of this phenomenon, we prefer to pass to symplectic maps, 
where one can push the numerical analysis to smaller e values. 

3. SYMPLECTIC MAPS 

In the preceding section we showed the existence of a thermodynamic 
limit distribution for the LCE in Hamiltonian systems. Moreover, the spec- 
trum turns out to be roughly linear, i.e., L(x)~-(1-x), in highly chaotic 
regions. 

In order to verify the generic properties of these results, we extend the 
analysis to symplectic maps of the form 

q(n+  1) = q(n) + p(n) 

p(n + 1 ) = p(n) + ~zVF(q(n + 1 )) 

Mod(2~r) (3.1) 
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where q and p are N-dimensional vectors depending on a discrete time n, 
and V=(#/q~ ..... O/qN). Let us point out that a symplectic map is a 
canonical transformation from the variables (q(n), p(n)) to 
(q(n+ 1), p (n+  1)). Moreover, such map is interpretable as the recursive 
rule associated to a Poincar6 section of a Hamiltonian system with N +  1 
degrees of freedom. In particular, for ~ = 0, Eq. (3.1) represents a system of 
uncoupled harmonic oscillators (p being the actions and q the angles). 
When, instead, c~ r 0, F(q) plays a role analogous to the nonintegrable term 
in a Hamiltonian flux. Finally, let us notice that the LCE of Eq. (3.1),)vi, 
are related to the LCE of the associated Hamiltonian flux A~ by the 
relation 

)~i=vAi (3.2) 

where z is the mean return time on the surface of section. In analogy with 
Section 2, we limit ourselves to nearest neighbor interactions and periodic 
boundary conditions, i.e., 

qi(n + 1 ) = qi(n) + pi(n) Mod(27c) (3.3a) 

p,(n+ 1)=pi(n)+~{g[qi+~(n+ 1 ) - q i ( n  + 1)] 
(3.3b) 

-g [q i (n+l ) -q~  l ( n + l ) ] )  Mod(2~) 

with ql = qN+l and p~ = PN+ 1. The procedure to compute the LCE for 
map (3.3) is analogous to that used in the Hamiltonian case (for technical 
details see the Appendix). 

Since the q's are angular variables, it is natural to choose g(x) as a 
periodic function. In particular, we have chosen g(x) = sin"(x), n = 1, 3, 5. 
For c~ > 0.1, an asymptotic form of the LCE spectrum is already attained 
for N~-10, again showing a straight-line shape (see Fig. 3). We have 
verified that the introduction of random quenched couplings ~i with 
average value ~ > 0.1, which modifies Eq. (3.3b) 

pi(n+ 1)=pi(n)+c~+lg[q~+~(n+ 1)-q~(n + 1)] 

-~ ig[qi (n+l) -q~_l (n+l)]  Mod(27z) (3.4) 

does not affect the previous results (see Fig. 4). This shows that the obser- 
ved behavior does not depend on any hidden symmetry of (3.3). 

For c~ < 0.1 an asymptotic LCE spectrum is again obtained, but L(x) 
is no longer a straight line. In particular, in this weakly chaotic regime, a 
behavior similar to that of Hamiltonian systems is observed: L(x) is linear 
only in the region x ~ 1, while for x _~ 0 the function tends to depart from 
the linear behavior (see Fig. 5). This effect enhances as e decreases. A quan- 
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Liapunov exponents )oi versus i/N for the map (3.3). (A) g(x)=sinx, ~= l; (B) 
g(x) = sin ~ x, cr = 0.5; (C) g(x) = sin 5 x, c~ = 0.6. 

t i ta t ive analys is  of this b e h a v i o r  has been  pe r fo rmed  by  m e a s u r i n g  the 
q u a n t i t y  

D ~1_ 
2 1 Z 2 N  (3.5) 

which  is a n  es t imate  of the l oga r i t hmic  der iva t ive  of L(x) at x = 0. Whi le  
for cr D is fairly c o n s t a n t  a r o u n d  1 ( conf i rming  the s t ra ight - l ine  
b e h a v i o r  of the spec t rum) ,  for ~ t e n d i n g  to zero, D increases  r e a s o n a b l y  
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fast (for ~ = 5  x 10 3 we obtain an average value D-~ 8 with N=40) .  
However, in this range of small c~ values, we start encountering the problem 
of an increasing dependence on the initial condition, which makes the 
estimate of the scaling behavior unfeasible. Referring, for instance, to 
c~=5 x 10 3, we obtain (in different trials 108 iterations long) results 
oscillating between D---5 and 11. The difference between these values is 
definitely out of the statistical errors, thus indicating that the phase space is 
(on that time scale) partitioned in disconnected stochastic components. 
However, the squeezing of the LCE spectrum against the y axis turns out 
to be, from our numerical simulations, unequivocal, as an increase of one 
order of magnitude in the derivative of Eq. (3.5) has been observed. 

4. R A N D O M  M A T R I C E S  

The nearly straight line shape of the LCE spectrum, both in flows and 
maps, suggests the independence of this feature from the details of the 
dynamics. The simplest way to test this conjecture is by neglecting the 
deterministic correlations in the evolution of the tangent vectors. 

The computation of the LCE involves, for the symplectic map (3.1), 
products of matrices of the form 

1 
A~(n)=Ic~al(n) l + :~a(n) 1 (4.1) 

where 1 is the N x N identity matrix, and a~j is the N x N symmetric matrix 
defined by 

a~(n) = ~2F/~?qi Oq j (4.2) 

where the derivative is evaluated in q(n). Here, we still multiply matrices of 
the form (4.1), but instead of following the order and the points in the 
phase space according to the dynamics (3.3), we operate in a random 
fashion. More precisely, each element of a given matrix is chosen indepen- 
dently of all the others, and each matrix independently of the following 
one. This choice represents the simplest nontrivial approximation of the 
deterministic dynamics in the highly chaotic regime. It has already been 
shown in some cases that the scaling behavior of 2i as a function of e does 
not change when the deterministic dynamics (5) is substituted by a random 
evolution. (6) 

Since we are here interested in a comparison with the models studied 
in Sections 2 and 3, the only matrix elements kept different from zero are 
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those for which [ i - j [  < 1, plus the pairs (1, N), (N, 1). Their probability 
distribution has been chosen according to the relation 

aO.=X~m/2+2 , m = 1, 2 (4.3) 

where :? is a fixed value, 7 is an odd integer, and Xm is a random number 
either with a uniform distribution in the interval ( -  1, 1) (m = 1), or with a 
Gaussian distribution with zero average and unit variance (m = 2). 

Moreover, one can impose the analogy of the conservation of total 
momentum Z~-I  Pi(n) = 0 by requiring 

N 

a,j= O, Vi (4.4) 
/= 1 

We have verified that the results for the LCE do not vary significantly for 
different choices of the probability distribution. In Fig. 6 we show a typical 
LCE spectrum reproducing the same qualitative features observed for all 
models studied in Sections 2 and 3 (for other cases, see Ref. 6). In contrast 
to the models of the previous sections, here the shape of the LCE spectrum 
is fairly independent of c~. However, since the enhancement (for small e) of 
the LCE spectrum around "~1 is related to the long-time correlations in the 
deterministic dynamics, we could not expect an agreement in that 
parameter region. 

Another recipe to construct these random matrices is obtained by 
keeping the formal definition of the matrix elements as in Eq. (4.2), but 
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Fig. 6. L i a p u n o v  e x p o n e n t s  2 i v e r s u s  i/N, for  r a n d o m  m a t r i c e s  (4.3),  7 = 3, ~ = 0.01, 2 = 0. 
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choosing the phase point q(n) in a random fashion. Moreover, in order to 
have a strict analogy with the dynamics of the syrnplectic map (3.3), we 
have chosen the coordinates qi to be identically and uniformly distributed 
in the interval (0, 2~). Indeed, several simulations have confirmed this to be 
the asymptotic distribution. Therefore, our procedure consists, first, in 
choosing a random sequence of points in the phase space and, second, in 
multiplying the matrices associated to the tangent space. Apart from the 
correlations present in the deterministic evolution, the main difference 
between the two procedures comes from the existence of stable and 
unstable manifolds in the map (3.3). In particular, from the alignment of 
the Liapunov vector along the unstable manifold, it follows that the closer 
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a point is to its nth iterate, the closer are the directions of the Liapunov 
vectors of the respective points. The same cannot obviously be expected for 
random matrices, because of the random ordering. However, in spite of this 
difference, the numerical results for the two models do coincide for large 
a's, as shown in Fig. 7 [for g(x) = sin x l ,  where the respective LCE spectra 
are reported. We have not been able to find a reasonable conjecture sub- 
stantiating this numerical result. Its importance is, however, transparent, as 
it allows one to quantify the effect of the correlations in the deterministic 
flow: the difference between the LCE spectrum for the symplectic maps and 
random matrices is entirely due to the correlations. 

5. C O N C L U S I O N S  

The wide phenomenology presented here of symplectic dynamics 
shows that the existence of a thermodynamic limit for the LCE spectrum is 
a generic result. Moreover, the shape of this spectrum in the strongly 
chaotic limit is almost independent of the details of the dynamics and is 
approximatively linear. Similar results have been obtained by analytic com- 
putations for some stochastic linear dynamical systems, thus suggesting a 
sort of universality in the high-dimensional limit. (7) This is a first encourag- 
ing result toward the construction of a statistical approach to high-dimen- 
sional symplectic models. Another relevant result is the squeezing of the 
LCE spectrum near x = 0  as an integrable limit is approached. This 
suggests that a few variables contribute to a chaotic motion on a short time 
scale, while all the others perhaps yield, a very slow diffusion. In other 
words, the fast chaotic behavior is confined to a low-dimensional manifold. 
This is analogous to what happens in some dissipative systems, where the 
center manifold theory (a) allows, in principle, the identification of the sub- 
space of the chaotic motion, with the obvious difference that the other 
variables do not contribute at all to the asymptotic motion. 

APPENDIX  

Here we report a brief sketch of the numerical algorithm for com- 
puting the LCE spectrum. Let us consider the equation of motion 

~ = f(x), x ( t +  1) = g(x(t)) (A.I) 

where x, f, g e R 2N. The evolution in the tangent space is described by 

)'= m=lZ OX~-~Jm, Yi(t+l)= ~__=l ~--~m ym(t) (A.2) 

822/46/1-2-! 1 
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where the derivatives are evaluated along the trajectory x(t) determined by 
Eq. (A.1). The Liapunov exponents are finally given by (9) 

! 

2,= lira -lln IJ(~)(t)• "'" • (A.3) 
l ~  t i = 1  

where J(m)(t) evolves according to Eq. (A.2), and J( ' l(0) are orthonormal 
vectors with unitary norm. In practice, Eq. (A.3) cannot be used directly to 
compute the LCE, since the angles among the J(m)(t) tend to zero for t 
tending to infinity. A repeated application of the Gram-Schmidt orthonor- 
realization procedure, however, allows one to overcome the difficulty. For 
more details see Ref. 9. 
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